Longer Randomly Blinded RSA Keys May Be Weaker Than Shorter Ones
نویسنده
چکیده
Side channel leakage from smart cards has been of concern since their inception and counter-measures are routinely employed. So a number of standard and reasonable assumptions are made here regarding an implementation of RSA in a cryptographic token which may be subjected to non-invasive side-channel cryptanalysis. These include blinding the re-usable secret key, input whitening, and using an exponentiation algorithm whose operation sequence partially obscures the key. The working hypothesis is that there is limited side channel leakage which only distinguishes very imprecisely between squarings and multiplications. For this typical situation, a method is described for recovering the private exponent, and, realistically, it does not require an excessive number of traces. It just requires the modulus to be public and the public exponent not to be too large. The attack is computationally feasible unless parameters are appropriately adjusted. It reveals that longer keys are much more vulnerable than shorter ones unless blinding is proportional to key length. A further key conclusion is that designers must assume that the information theoretic level of leakage from smart cards can be transformed into usable key information by adversaries whatever counter-measures are put in place.
منابع مشابه
1-out-of-n Signatures from a Variety of Keys
This paper addresses how to use public-keys of several different signature schemes to generate 1-out-of-n signatures. Previously known constructions are for either RSA-keys only or DL-type keys only. We present a widely applicable method to construct a 1-out-of-n signature scheme that allows mixture use of different flavors of keys at the same time. The resulting scheme is more efficient than p...
متن کاملShort Signatures from Weaker Assumptions
We provide constructions of (m, 1)-programmable hash functions (PHFs) for m ≥ 2. Mimicking certain programmability properties of random oracles, PHFs can, e.g., be plugged into the generic constructions by Hofheinz and Kiltz (J. Cryptol. 2011) to yield digital signature schemes from the strong RSA and strong q-Diffie-Hellman assumptions. As another application of PHFs, we propose new and effici...
متن کاملIdentity-Based Multi-signatures from RSA
Multi-signatures allow multiple signers to jointly authenticate a message using a single compact signature. Many applications however require the public keys of the signers to be sent along with the signature, partly defeating the effect of the compact signature. Since identity strings are likely to be much shorter than randomly generated public keys, the identity-based paradigm is particularly...
متن کاملNew Multi-Signature Schemes and a General Forking Lemma
A multi-signature scheme enables a group of signers to produce a compact, joint signature on a common document, and has many potential uses. However, existing schemes impose key setup or PKI requirements that make them impractical, such as requiring a dedicated, distributed key generation protocol amongst potential signers, or assuming strong, concurrent zero-knowledge proofs of knowledge of se...
متن کاملRon was wrong, Whit is right
We performed a sanity check of public keys collected on the web. Our main goal was to test the validity of the assumption that different random choices are made each time keys are generated. We found that the vast majority of public keys work as intended. A more disconcerting finding is that two out of every one thousand RSA moduli that we collected offer no security. Our conclusion is that the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007